

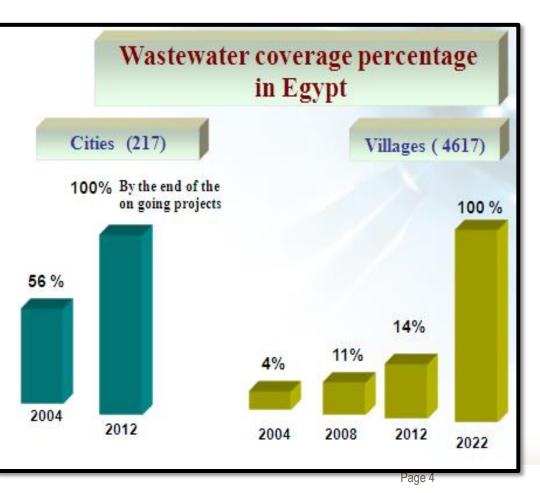
Progress for the Pilot Project in EGYPT *By Dr. Rifaat Abdel Wahaab Professor of Environmental Science Sector Head, Research & Development (R&D) Holding Company for Water and Wastewater (HCWW) Cairo, Egypt*

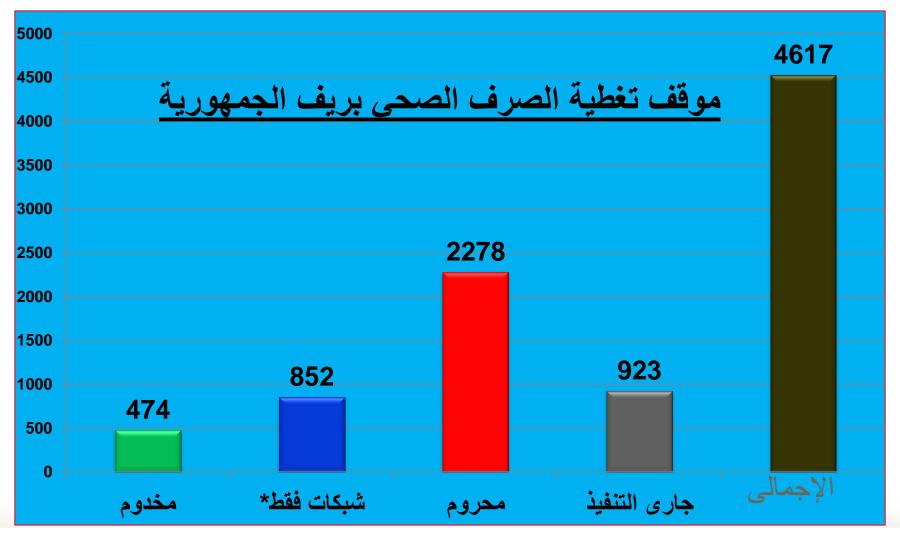
6th SWIM Regional Meeting 07-11, June 2015 Bologna, Italy

<u>Project Goal</u>

- Develop potential decentralized / low cost wastewater treatment technology and reuse for rural (small) communities in Egypt,
- Study the applicability of treated wastewater quality to promote security and acceptance of wastewater reuse in Egypt,
- Develop integrated approach, targeting the enabling environment for replication in Egypt

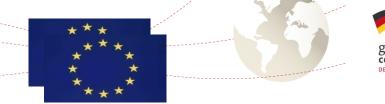
Existing Situation :Sanitation In Egypt





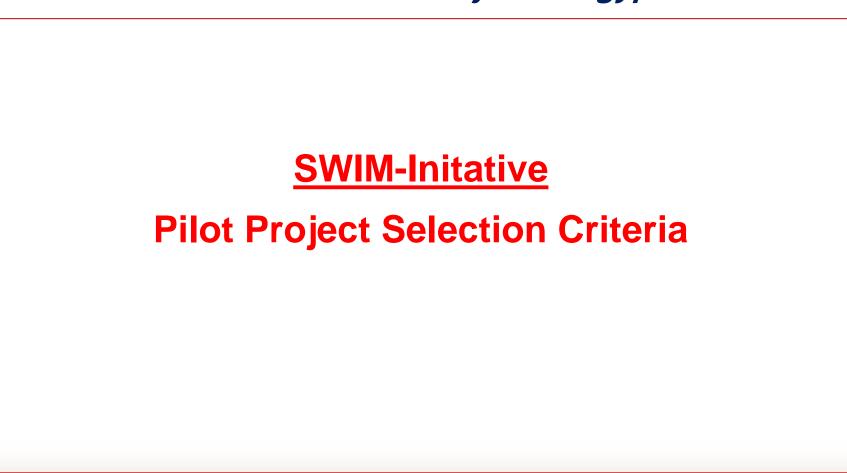
Sanitation Coverage

- ✓ >95 % in Urban areas & < 15% in rural areas.</p>
- ✓ 75 % rural population uses septic tanks
 ✓ Treatment Technologies:
- 79% : Activated sludge, oxidation ditches
- 11% :*WSP*
- 5% : Trickling filters
- 5% : Others



Problem Definition:

Rural Sanitation : Facts & Figures


- Rural sanitation coverage is less than 15%, which means that 40 million Egyptian citizens have no safe sanitation services (4700 villages & 30,000 scattered settlements).
- The estimated amount of money required to fill this gap is about 12 billion US Dollar .
- Under the conventional solutions we need between 10 to 15 years to cover all villages with the sanitation service.

HC)

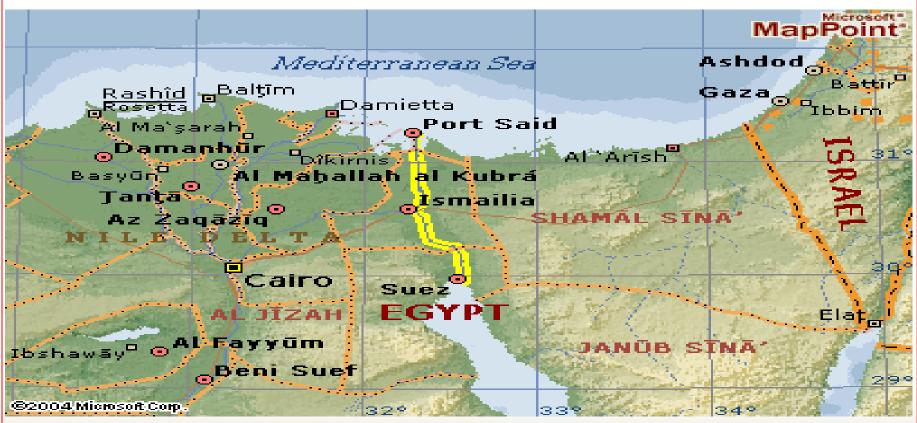
SWIM-Sustain Water MED Demonstration Project in Egypt

Pilot Project Selection Criteria

- The priority was given for the villages according to the following criteria:
 - Villages that are located near water ways to save water resources from pollution
 - Sensitivity of receiving media (canals, drains,..etc)
 - ✓ Villages with high water table to save ground water
 - Villages with commitment & loyalty for public participation in sanitation services.
 - Availability Desert land nearby for WW-Reuse

Pilot Project -Village Profile

- 1. Name & Location : Al-Gezayra, Ismailia Governorate
- 2. Population (Thousands): 1100
- **3.** Street's Width (m) : 4-6
- 4. Type of Agricultural Crops: Tomatoes, olives,..etc
- 5. Irrigation Canal(s)/Agricultural Drain(s): Yes
- 6. Livestock: yes
- 7. Industrial Activities (if existing) : No
- 8. Drinking Water Coverage : yes
- Existing Sanitation: Tranches to the ground water or pumped to nearby agriculture canal/drains
- 10. Land Available for proposed WWTP : 350 m2



Ismailia-Pilot Project Location

Ismailia-Pilot Project Location

Dumyat |

hlia

Port Said

Port Said

公

tarah El Sharqiyya, Al Qantarah Sharq, Egypt-

32 km

Ash Sharqiyah

Ismailia Ismailia

© 2013 ORION-ME © 2013 Cnes/Spot Image © 2013 Google Data SIO, NOAA, U.S. Navy, NGA, GEBCO

30°47'42.34" N 32°19'37.28" E elev 5 m

Google

N

(0)

Imagery Date: 11/22/2005

Eye alt 135.68 km

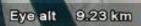
Al Qantarah El Sharqiyya, Al Qantarah Sharq, Egypt

Al Gazeria village

COLUMN 1

1957 m

Imagery Date: 2/12/2010


2004

30°50'05.41" N 32°17'02.70" E elev 0 m

Image © 2013 DigitalGlobe

© 2013 Google

© 2013 ORION-ME

.....Google

Sinal Brid-9

N (
)

em

Al Gazeria village

Image © 2013 DigitalGlobe © 2013 Google © 2013 ORION-ME

Google

N

Imagery Date: 2/12/2010

2 2004

449 m

30°48'52.80" N 32°14'22.10" E elev 6 m

Eye alt 2.13 km 🔘

2.

HCW

SWIM-Sustain Water MED Demonstration Project in Egypt

SWIM – Egypt : Scope & Methodology

Systematic assessment using the Enabling Environment Framework

Socio-cultural Acceptance القبول الثقافي

والاجتماعى

Financial Arrangements الترتيبات المالية

Skills and

Legal Framework أطار عمل قانونی

Institutional Arrangements

الترتيبات المؤسسية

Confederation

al Department of Economic Affairs FDEA Secretariat for Economic Affairs SECO 12.07.2015 Capacities المهارات و القدرات

What has been done?

Assessment of the challenges and success factors of past small-scale sanitation initiative in Egypt:

- ✓ Field visits
- Questionnaire for date collection & evaluation
- Interviews with key-stakeholder in the pilot area
- Literature review for past initiatives
- ✓ TORs for Base Line Assessment Study

Preliminary Assessment of Past Initiatives

Governorate	Village (District)	Technology						
FIELD VISIT WITH SA	AMPLING							
Gharbeya	Mashal / Kom El-Naggar	Activated sludge						
Gilai Deya	(Bassyun)							
	Zawyat El-Karatsah	Compact anaerobic tower: upflow anaerobic						
	WWTP	sludge blanket + anaerobic filter + trickling filter						
Fayoum		sand filtration						
	Abdel Kareem Issa	Upflow Septic Tank / Baffled Reactor (USBR)						
	(Sanhorus)							
	Sheikh Yacoub (Fashn)	Primary settling tanks + aeration + subflow						
Beni Suef		planted gravel filter + oxidation channel						
beni Suer	Maimun (Markaz El	On-site collective septic tank with gravel filter +						
	Wasta)	aerated filter at WWTP						
Sharkiya	Kafr El Hamam (next to	Kimatech [®] (Prefabricated unit based on physico-						
	Zagazig)	chemical treatment)						

Preliminary Assessment of Past Initiatives

CASE STUDIES WITH DA	TA AVAILABLE							
	Meet Dafr	UASB + Downflow Hanging Sponge (DHS)						
Dakahlia	Samaha	Constructed wetland						
	Meet Mazah	Waste stabilisation ponds						
Gharbeya	Senbo	Dual Biological Aerobic Filter (DBAF)						
Damietta	24 villages	Various technologies						
Kafr El Sheikh	Various ezbas (incl. El	Waste Stabilisation Ponds (WSP)						
	Moufty, Om Sen, El							
	Koleea)							
	Zinin WWTP	Pilot compact anaerobic tower with biological						
Giza		filter						
Giza	NRC	Pilot UASB + DHS						
		Pilot Primary sed. + DHS						
FIELD VISIT ONLY								
Beheira	Sharaf El Din (Zawayt	Anaerobic Baffled Reactor (ABR)						
Deneira	Gazal)							
Oona (visit to be deno)	Kom El Dabae	WSP, small-bore sewer sytem (SBS), forest						
Qena (visit to be done)	Dandara	ABR with upflow gravel filter						

(i) TECHNICAL COMPARISON (for Egyptian conditions)

		CAS w.d.	CAS (EA)	SBR	MBBR (EA)	RBC+ Imh	TF+ Imh	UASB +TF	ABR +TF	WSP	CW
~	Appropriateness of technology	-	+	-	-	+	+	+	+	+	+
✓	Ease of operation	-	+/-	-	-	+	+	+/-	+	+	+
~	Safety against peak loads	+	+	+	+/-	+/-	+/-	+/-	+	+	+
~	Dependence on uninterrupted power supply	-	-	-	-	-	-	+/-	+	+	+
~	Dependence on foreign spare parts	-	+/-	-	-	+/-	+/-	+/-	+	+	+
~	Land requirements	+	+	+	+	+	+	+	-	-	-

w.d. ... with digestion, Imh ... Imhoff Tank

(ii) ENVIRONMENTAL COMPARISON (for Egyptian conditions)

		CAS w.d.	CAS (EA)	SBR	MBBR (EA)	RBC+ Imh	TF+ Imh	UASB +TF	ABR +TF	WSP	CW
~	Compliance with Egyptian effluent criteria	+	+	+	+	+	+	+	+	+/-	+
✓	Risk of odour / noise / vectors	+	+	+	+	+	+	+	+	+/-	+
~	CO2 – equiv. emissions	-	-	-	-	+	+	+/-	+/-	+	+
~	Ease of upgrading to meet stricter effluent standards	+	+	+	+	+	+	+	+	-	+

w.d. ... with digestion, Imh ... Imhoff Tank

(iii) FINANCIAL COMPARISON (for Egyptian conditions)

	CAS w.d.	CAS (EA)	SBR	MBBR (EA)	RBC+ Imh	TF+ Imh	UASB +TF	ABR +TF	WSP	CW
✓ CAPEX	-	-	-	-	+/-	+/-	+/-	+/-	+/-	+/-
✓ OPEX	-	-	-	-	+	+	+	+	+	+

NOTE:

CAPEX results might be substantially different in different regions of Egypt (Upper Egypt versus Nile Delta)

What is the appropriate technology for rural areas in Egypt?

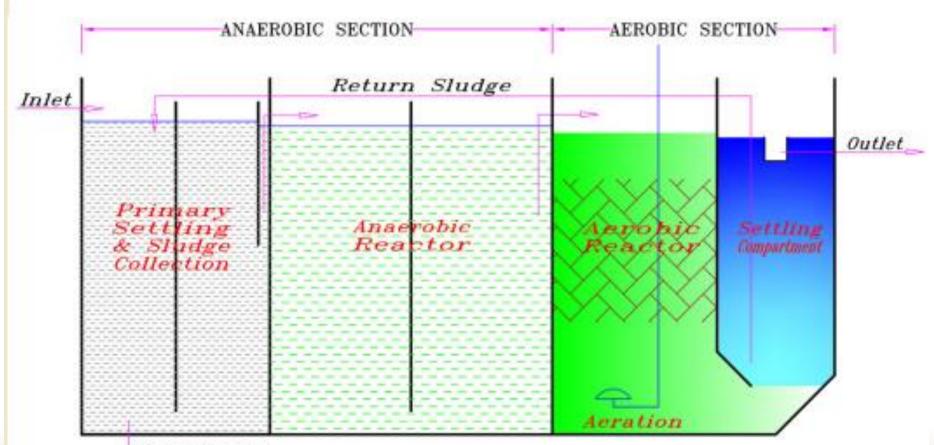
Some criteria for WWTPs in rural areas

- One should choose a simple and reliable process
- Construction and O & M costs should be reasonable
- Decentralized treatment plants are often more expensive (to build and operate) than larger centrally located plants (cluster concept)
- Use of the least amount of land (in the densely populated agricultural areas)
- Low power consumption
- Minimum of mechanical equipment
- Local availability of spare parts

Suitable technologies

- Any technology which works for larger populations can also be adapted to smaller populations
- Size of plant often determines which technology leads to lower capital costs
- Community often does not care so much about the technology but the location of the plant and the amount of land required (especially where land is a precious commodity (Nile Delta)
- Also environmental nuisances (odor, noise, vectors) can be of concern
- Operation and maintenance of the plant should not require highly skilled labor (employ village people)

Anaerobic Aerobic Fixed Bed Reactor (AFBR)



HCWV

SWIM-Sustain Water MED Demonstration Project in Egypt

Sludge Removal

What has been done up to date ?

- Tender Document
- 🗸 EIA
- ✓ Call for offers
- Offers evaluation
- Contracting the executing firm (TIA Co.Germany/Tatget-Co.Egypt)
- Implementation : 15 June (4-6 months needed)

interpretation of the local division of the

Funded by the European United

